SFKs, Ras, and the classic MAPK pathway couple muscarinic receptor activation to increased Na-HCO(3) cotransport activity in renal epithelial cells.

نویسندگان

  • R B Robey
  • O S Ruiz
  • J Baniqued
  • D Mahmud
  • D J Espiritu
  • A A Bernardo
  • J A Arruda
چکیده

Cholinergic agents are known to affect the epithelial transport of H2O and electrolytes in the kidney. In proximal tubule cells, cholinergic agonists increase basolateral Na-HCO(3) cotransport activity via M(1) muscarinic receptor activation. The signaling intermediates that couple these G protein-coupled receptors to cotransporter activation, however, are not well defined. We therefore sought to identify distal effectors of muscarinic receptor activation that contribute to increased NBC activity in cultured proximal tubule cells. As demonstrated previously for acute CO2-regulated cotransport activity, we found that inhibitors of Src family kinases (SFKs) or the classic mitogen-activated protein kinase (MAPK) pathway prevented the stimulation of NBC activity by carbachol. The ability of carbachol to activate Src, as well as the proximal (Raf) and distal [extracellular signal-regulated kinases 1 and 2 (ERK1/2)] elements of the classic MAPK module, was compatible with these findings. Cholinergic stimulation of ERK1/2 activity was also completely prevented by overexpression of a dominant negative mutant of Ras (N17-Ras). Taken together, these findings suggest a requirement for the sequential activation of SFKs, Ras, and the classic MAPK pathway [Raf-->MAPK/ERK kinase (MEK)-->ERK]. These findings provide important insights into the molecular mechanisms underlying cholinergic regulation of NBC activity in renal epithelial cells. They also suggest a specific mechanism whereby cholinergic stimulation of the kidney can contribute to pH homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the renal Na-HCO3 cotransporter. XI. Signal transduction underlying CO2stimulation.

We have previously shown that CO2 stimulation of the renal Na-HCO3 cotransporter (NBC) activity is abrogated by general inhibitors of protein tyrosine kinases. The more selective inhibitor herbimycin also blocked this effect at concentrations known to preferentially inhibit Src family kinases (SFKs). We therefore examined a role for SFKs in CO2-stimulated NBC activity. To this end, we engineere...

متن کامل

AFLUID October 46/4

Ruiz, Ofelia S., R. Brooks Robey, Yi-Yong Qiu, Long Jiang Wang, Cheng Jin Li, Jianfei Ma, and Jose A. L. Arruda. Regulation of the renal Na-HCO3 cotransporter. XI. Signal transduction underlying CO2 stimulation. Am. J. Physiol. 277 (Renal Physiol. 46): F580–F586, 1999.—We have previously shown that CO2 stimulation of the renal Na-HCO3 cotransporter (NBC) activity is abrogated by general inhibit...

متن کامل

A central role for Pyk2-Src interaction in coupling diverse stimuli to increased epithelial NBC activity.

Regulation of renal Na-HCO cotransporter (NBC1) activity by cholinergic agonists, ANG II, and acute acidosis (CO(2)) requires both Src family kinase (SFK) and classic MAPK pathway activation. The nonreceptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) couples discrete G protein-coupled receptor and growth factor receptor signaling to SFK activation. We examined the role of Pyk2-SFK in...

متن کامل

Proinflammatory interleukin-1 cytokines increase mesangial cell hexokinase activity and hexokinase II isoform abundance.

Mesangial cell hexokinase (HK) activity is increased by a diverse array of factors that share both an association with pathological conditions and a common requirement for classic MAPK pathway activation. To better understand the relationship between glucose (Glc) metabolism and injury and to indirectly test the hypothesis that these changes constitute a general adaptive response to insult, we ...

متن کامل

cAMP-mediated regulation of murine intestinal/pancreatic Na+/HCO3- cotransporter subtype pNBC1.

Basolateral Na(+)-HCO(3)(-) cotransport is essential for intestinal anion secretion, and indirect evidence suggests that it may be stimulated by a rise of intracellular cAMP. We therefore investigated the expression, activity, and regulation by cAMP of the Na(+)-HCO(3)(-) cotransporter isoforms NBC1 and NBCn1 in isolated murine colonic crypts. Na(+)-HCO(3)(-) transport rates were measured fluor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 280 5  شماره 

صفحات  -

تاریخ انتشار 2001